Question

Integrals over the Fermi–Dirac and Bose–Einstein distributions define a “poly” form of this function. The replica trick takes advantage of the fact that this function of Z is equal to the limit as n approaches zero of “Z-to-the-n, (-5[1])minus one, all over n.” The expected value of the energy is equal to the negative partial derivative of this function of Z with respect to beta. The Helmholtz free energy (10[1])is equal to kT times this function of the partition (10[1])function. Stirling’s formula approximates (-5[1])this function (-5[1])of (-5[1])n-factorial. (-5[2])The negative sum over all states of “p times this function of p” defines the Shannon entropy, while Boltzmann’s definition of entropy is equal to k times this function of the number of microstates. For 10 points, name this function, the inverse of the exponential function. (10[1])■END■ (10[4])

ANSWER: natural logarithm [or natural log or ln; accept polylogarithm]
<Physics>
= Average correct buzz position

Back to tossups

Buzzes

PlayerTeamOpponentBuzz PositionValue
Jacob RobertsonOxford AWarwick37-5
Rachel BenthamCambridge BCambridge A6810
Kevin FlanaganBristolKiel7810
Ben Russell JonesEdinburghImperial A82-5
Michael KohnDurham AImperial B84-5
Linus LuuCambridge COxford C85-5
Andrew FisherSheffieldKCL86-5
Alexander BakerOxford BDurham B86-5
Jaime Salamanca CamachoImperial BDurham A13210
Matt SheldonOxford CCambridge C13310
Michael MaysImperial AEdinburgh13310
Jake RobertsDurham BOxford B13310
Dillon PatelWarwickOxford A13310