Question

Integrals over the Fermi–Dirac and Bose–Einstein distributions define a “poly” form of this function. (10[1])The replica trick takes advantage (10[1])of the fact that this function (10[1])of Z (10[1])is equal to the limit as n (10[1])approaches zero of “Z-to-the-n, (-5[1])minus one, all over n.” The expected value of the energy (-5[1])is equal to the negative partial derivative (10[1])of this function of Z with respect to beta. (-5[1])The Helmholtz (10[1])free energy (10[1])is equal to kT times this function (-5[1])of the partition (10[1])function. (10[1])Stirling’s formula (10[1])approximates (-5[2])this function (-5[5])of (-5[1])n-factorial. (10[3]-5[5])The negative (10[1])sum over all states of “p times this function of p” defines the Shannon entropy, while Boltzmann’s definition of entropy is equal (10[1])to k times (10[1])this function (-5[1])of the number of microstates. For 10 points, name this function, (10[1])the inverse of the exponential function. (10[4])■END■ (10[19]0[1])

ANSWER: natural logarithm [or natural log or ln; accept polylogarithm]
<Physics>
= Average correct buzz position

Buzzes

PlayerTeamOpponentBuzz PositionValue
Cade ReinbergerRIT BBinghamton1310
Tim MorrisonStanford AStanford B1810
Rasheeq Azad (UG)UNC B (UG)Duke A (UG)2410
Swapnil GargBerkeley ABerkeley C2610
David BassJohns HopkinsColumbia C3310
Jacob RobertsonOxford AWarwick37-5
Geoffrey Wu (UG)Columbia ARowan48-5
Jerry VinokurovJohn JayVassar5510
Amogh KulkarniGeodesicKentucky64-5
Chinmay MurthyTexas ASorbonne6610
Rachel BenthamCambridge BCambridge A6810
Matthew WangUBC AClaremont A75-5
Kevin FlanaganBristolKiel7810
Danny Han (UG)PennNYU B7910
Rohan DalalGeorgia Tech BGeorgia Tech A8110
Kenny Zhang (UG)Virginia A (UG)GWU B (Grad)82-5
Ben Russell JonesEdinburghImperial A82-5
Anuttam RamjiBerkeley BStanford C84-5
Yared TadesseCornell ACornell B84-5
Eshan Pant (DII)NYU AHaverford84-5
Michael KohnDurham AImperial B84-5
Jack ObermanSouth CarolinaHarding84-5
Linus LuuCambridge COxford C85-5
Will HooverRIT ACornell C86-5
Jim Fan (Grad)UNC A (Grad)Maryland B (UG)8610
Jason ThieuMichigan State AAppalachian State86-5
Dimitris KalafatisTexas A&M BUW A8610
Roxanne Tang (UG)Ohio State AMichigan A8610
Leo Tao (UG)Michigan CMichigan B86-5
Andrew FisherSheffieldKCL86-5
Alexander BakerOxford BDurham B86-5
Isaac Mammel (UG)Maryland A (Grad)JMU B (UG)8810
Brian Lai (DII)Virginia B (UG)UNC D (DII)11010
Akshay SeetharamClaremont AUBC A11310
Davin SivertsonAlabamaVanderbilt A115-5
Jack LewisMTSUVanderbilt B12610
Julian BushlowCornell CRIT A13210
Perry O'Connor (Grad)Liberty A (Grad)Liberty C (DII)13210
Jaime Salamanca CamachoImperial BDurham A13210
Caden HausteinHardingSouth Carolina13210
Allan LeeStanford CBerkeley B13310
Karthik PrasadCornell BCornell A13310
Kevin Liu (DII)Maryland C (DII)GWU A (UG)13310
Zander Werner (DII)Virginia C (UG)William & Mary A (UG)13310
Michael Eng (UG)UNC C (UG)Liberty B (DII)13310
Carly Hemani (DII)JMU A (UG)Roanoke College A (DII)13310
Annie Goodman (Grad)GWU B (Grad)Virginia A (UG)1330
Gavin BramerAppalachian StateMichigan State A13310
Rahul KumarRice AIowa A13310
Ryan DunnIowa BTexas A&M A13310
Emmett Bicknell (DII)CedarvilleKenyon13310
Dennis Yang (DII)Michigan BMichigan C13310
Peter Sanders (UG)RowanColumbia A13310
Arjun Bothra (UG)HaverfordNYU A13310
Michael MaysImperial AEdinburgh13310
Dillon PatelWarwickOxford A13310
Jake RobertsDurham BOxford B13310
Matt SheldonOxford CCambridge C13310
Bryanna ShaoVanderbilt AAlabama13310
Caleb WestKentuckyGeodesic13310