Question
Fréchet inception distance measures the quality of this type of data given two distributions of this data. The Nightshade tool adds noise to this kind of data to “poison” models that train on it. A model designed for this type of data introduced skip connections to enable deeper models. A 2018 study by Buolamwini and Gebru found evidence of discriminatory disparities in classifiers for this type of data. In an architecture primarily used for this type of data, pooling steps reduce dimensionality between operations that move a filter by a specified stride. A collection of this type of data developed by Fei-Fei Li was used for the ILSVRC competition. AlexNet and ResNet use convolutional neural networks to classify this type of data. For 10 points, name this type of data generated by models such as DALL-E and Midjourney. ■END■
Summary
2024 ACF Regionals @ Berkeley | 01/27/2024 | Y | 3 | 100% | 0% | 0% | 71.67 |
2024 ACF Regionals @ Cornell | 01/27/2024 | Y | 3 | 100% | 0% | 0% | 42.00 |
2024 ACF Regionals @ JMU | 01/27/2024 | Y | 10 | 100% | 0% | 0% | 96.30 |
2024 ACF Regionals @ Minnesota | 01/27/2024 | Y | 2 | 100% | 0% | 0% | 22.50 |
2024 ACF Regionals @ Ohio State | 01/27/2024 | Y | 3 | 100% | 0% | 0% | 100.67 |
2024 ACF Regionals @ Rutgers | 01/27/2024 | Y | 5 | 100% | 0% | 20% | 55.00 |
2024 ACF Regionals @ Imperial | 01/27/2024 | Y | 8 | 100% | 0% | 0% | 85.75 |
2024 ACF Regionals @ Vanderbilt | 01/27/2024 | Y | 5 | 80% | 0% | 20% | 89.50 |
2024 ACF Regionals @ MIT | 01/27/2024 | Y | 3 | 100% | 0% | 33% | 74.00 |
Buzzes
Player | Team | Opponent | Buzz Position | Value |
---|---|---|---|---|
Denis Liu | Arizona State | Minnesota B | 12 | 10 |
Natan Holtzman | Stanford B | Stanford A | 26 | 10 |
Benjamin McAvoy-Bickford (DII) | UNC A (Grad) | JMU A (UG) | 28 | 10 |
Albert Zhang (UG) | Columbia C | Columbia B | 28 | 10 |
David Bass | Johns Hopkins | NYU A | 28 | 10 |
Brian Lai (DII) | Virginia B (UG) | UNC B (UG) | 29 | 10 |
Danny Cutbill | RIT A | Cornell C | 30 | 10 |
Sam Hutton | Cambridge C | Oxford A | 31 | 10 |
Drew Wetterlind | Iowa State | Minnesota C | 33 | 10 |
Jerry Vinokurov | John Jay | Haverford | 33 | 10 |
Towery McNeil | Boston University | Dartmouth B | 33 | 10 |
Isaac Mammel (UG) | Maryland A (Grad) | Duke A (UG) | 41 | 10 |
Elliot Cosnett | Oxford B | KCL | 44 | 10 |
Cade Reinberger | RIT B | Binghamton | 48 | 10 |
Karthik Prasad | Cornell B | Cornell A | 48 | 10 |
Geoffrey Wu (UG) | Columbia A | Vassar | 48 | -5 |
Danny Han (UG) | Penn | Rowan | 48 | 10 |
Quentin Mot | Georgia Tech A | Kentucky | 48 | 10 |
Swapnil Garg | Berkeley A | Berkeley C | 60 | 10 |
Joseph Chambers (DII) | Virginia A (UG) | William & Mary A (UG) | 62 | 10 |
Rachel Bentham | Cambridge B | Imperial B | 62 | 10 |
Aisling Skeet | Durham B | Cambridge A | 67 | 10 |
Jack Oberman | South Carolina | Alabama | 67 | -5 |
Adam Jones | Imperial A | Sheffield | 70 | 10 |
Luke Serrraglio | Ohio State B | Michigan C | 71 | 10 |
Alex Jiang | Brown A | Brandeis B | 75 | 10 |
Michael Zhou | Georgia Tech B | MTSU | 83 | 10 |
Joy An | Harvard A | Yale B | 83 | -5 |
Caden Haustein | Harding | Tennessee | 91 | 10 |
Navtej Singh | Michigan B | Cedarville | 93 | 10 |
Andrew Minagar | Yale B | Harvard A | 114 | 10 |
Bhargav Garre Venkata (DII) | Virginia C (UG) | Roanoke College A (DII) | 123 | 10 |
Anuttam Ramji | Berkeley B | Stanford C | 129 | 10 |
Munir Siddiqui (UG) | Maryland B (UG) | Liberty B (DII) | 132 | 10 |
Michael Eng (UG) | UNC C (UG) | GWU B (Grad) | 135 | 10 |
Alan Wu | Vanderbilt A | Vanderbilt B | 136 | 10 |
Kevin Liu (DII) | Maryland C (DII) | UNC D (DII) | 137 | 10 |
Michael Kohn | Durham A | Bristol | 137 | 10 |
Matt Sheldon | Oxford C | Warwick | 137 | 10 |
Miller Doer (DII) | Liberty C (DII) | GWU A (UG) | 138 | 10 |
Perry O'Connor (Grad) | Liberty A (Grad) | JMU B (UG) | 138 | 10 |
Rohan Navaneetha (DII) | Ohio State A | Kenyon | 138 | 10 |
Tom Doyle (UG) | Vassar | Columbia A | 138 | 10 |
Ben Russell Jones | Edinburgh | Kiel | 138 | 10 |
Davin Sivertson | Alabama | South Carolina | 138 | 0 |