Question

An exponent denoted with this letter is the critical parameter of the Box–Cox transformation, which converts non-normal dependent variables to a normal distribution. For 10 points each:
[10m] Name this non-theta Greek letter that also parameterizes the Poisson distribution, as it equals both the expected value and variance.
ANSWER: lambda
[10e] If lambda equals zero, then the Box–Cox transformation just involves applying this function to the input data to make it normal. This function is the inverse of exponentiation.
ANSWER: logarithm [accept natural logarithm or ln (“lawn”)]
[10h] This plot is used to graphically check whether data is normal, as two identically distributed groups of data follow a 45-degree line. Comparing heavy-tailed and normal distributions on this plot produces a nearly horizontal line.
ANSWER: Q-Q plot [or quantile-quantile plot]
<Other Science>

Back to bonuses

Summary

Data

Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Mississippi StateMcGill E001010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Vassar BArkansas010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaVassar A1010020
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
Central OklahomaWUSTL A010010
IowaVassar A010010
Texas AMcGill E010010
NYU BMississippi State1010020
NYU ATexas D010010
Texas COle Miss10101030
Texas BColorado College1010020