Question

Salem–Spencer sets cannot contain any non-trivial examples of these sequences, which are the subject of Szemerédi's theorem. For 10 points each:
[10e] Name these sequences in which the difference between any two consecutive terms is constant, unlike in geometric sequences.
ANSWER: arithmetic sequences [or arithmetic progressions]
[10h] In 2004, Szemerédi's theorem was extended with this result, which states that the sequence of prime numbers contains arbitrarily long arithmetic sequences.
ANSWER: Green–Tao theorem
[10m] The Green–Tao theorem led to improved results concerning the first Hardy–Littlewood conjecture, which generalizes this conjecture. This conjecture has been verified up to 10-to-the-388342, somewhat larger than the 10-to-the-18 upper bound for Goldbach’s conjecture.
ANSWER: twin prime conjecture
<Other Science>

Back to bonuses

Summary

Data

Alabama AAuburn C100010
Auburn AClemson A1010020
Emory BGeorgia Tech A100010
Georgia Tech BGeorgia A1010020
Georgia Tech DGeorgia Tech C100010
Emory AGeorgia Tech F100010
Georgia Tech ETennesse A1001020